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Abstract: The present paper aims to define and discuss (Lcs)n-manifolds and
Schouten van Kampen connection. We discussed the curvature tensor and Ricci
curvature tensor of this manifold with respect to the SVK-connection. We stud-
ied conformally flat, projectively flat, conharmonically flat, and concircularly flat
(Lcs)n-manifolds with the SVK-connection. At last, we gave an example of (Lcs)n-
manifolds with SVK-connection.
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1. Introduction
In 1989, K. Matsumoto [6] introduced the notion of Lorentzian para-Sasakian

manifolds and the generalization of LP -Sasakian manifolds. Lorentzian concircu-
lar structure manifolds (shortly, (Lcs)n-manifolds) were introduced in 2003 by A.
A. Shaikh [9]. In 2005 and 2006, Shaikh and Baishya [10], [11] investigated the
application of (Lcs)n-manifolds to the general theory of relativity and cosmology.
(Lcs)n-manifolds are also studied by Atceken et al ([1], [2]), D Narain and S, Yadav
[13].
The SVK-connection, endowed with an affine connection, is one of the most natural
connections adapted to a pair of distributions on a differentiable manifold [3], [8].
Solov’ev [12] investigated hyperdistributions in Riemannian manifolds using the
SVK-connection. Then, Zbigniew Olszak [7] studied the Schouten-van Kampen
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affine connection in relation to an almost contact metric structure and obtained
certain curvature properties of this connection on the manifold. Ahmet Yildiz [14],
Semra Zeren [15], M. Manev [5], and others also studied SVK-connection on dif-
ferent manifolds such as f -Kenmotsu manifolds, LP -Sasakian manifolds.

2. Preliminaries
In a Lorentzian manifold (M, g), we define a vector field ρ and 1-form A as

A(X) = g(X, ρ), (2.1)

for any vector field X∈χ(M). This ρ is called a concircular vector field [15] if

(▽X1A)(X2) = α{g(X1, X2) + ω(X1)A(X2)}, (2.2)

where α is a non-zero scalar function and ω is a closed 1-form.
Let M be a Lorentzian manifold admitting a unit timelike concircular vector field
ξ, called the generator of the manifold, Then we have

g(ξ, ξ) = −1 (2.3)

Since ξ is the unit concircular vector field, there exists a non-zero 1-form η so that
for

g(X, ξ) = η(X) (2.4)

following equations

(▽X1η)(X2) = α[g(X1, X2) + η(X1)η(X2)] (2.5)

and
▽Xξ = α[X + η(X)ξ] (2.6)

hold for all vector fields X,X1, X2 on M, where ▽ denotes the covariant derivative
with respect to Lorentzian metric g and α is non-zero scalar function satisfying

▽Xα = (Xα) = dα(X) = ρη(X), (2.7)

where ρ is a certain scalar function given by ρ=-(ξα).
If we put

ϕX =
1

α
▽X ξ, (2.8)

Then from (2.5) and (2.8) we say that

ϕX = X + η(X)ξ, (2.9)
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from which we have that ϕ is a symmetric (1, 1) tensor field and is called the
structure tensor of the manifold. Thus the Lorentzian manifold M together with
unit timelike concircular vector field ξ, it’s associate 1-form η and (1,1)-tensor field
ϕ, is said to be Lorentzian concircular structure manifold (M, g, ϕ, ξ, η, α)(briefly,
(Lcs)n-manifold) [9]. In particular if α=1, we obtain LP -Sasakian structure man-
ifold [4].
A differentiable manifold M of dimension n is known to be (Lcs)n-manifold if it
admits a (1, 1)-type tensor field ϕ, a covariant vector field η and a Lorentzian metric
g which satisfy

ϕ2X =X + η(X)ξ,

η ◦ ϕ =0, (2.10)

ϕξ =0,

η(ξ) =− 1,

g(ϕX1, ϕX2) =g(X1, X2) + η(X1)η(X2)

for all X1, X2 ∈ χ(M). In an (Lcs)n-manifold M, we have the following relations

(▽X1ϕ)X2 = α[g(X1, X2)ξ + 2η(X1)η(X2)ξ + η(X2)X1] (2.11)

η(R(X1, X2)X3) = (α2 − ρ)[g(X2, X3)η(X1)− g(X1, X3)η(X2)], (2.12)

R(X1, X2)ξ = (α2 − ρ)[η(X2)X1 − η(X1)X2], (2.13)

R(ξ,X)ξ = (α2 − ρ)(η(X)ξ +X), (2.14)

S(X, ξ) = (n− 1)(α2 − ρ)η(X). (2.15)

QX = (n− 1)(α2 − ρ)X. (2.16)

S(ϕX1, ϕX2) = (n− 1)(α2 − ρ)g(ϕX1, ϕX2). (2.17)

for any vector fields X,X1, X2, X3 ∈ χ(M). R being the curvature tensor and S
being the Ricci tensor.

Definition 2.1. An n-dimensional pseudo-Riemannian manifold is said to be an
η-Einstein manifold if the Ricci tensor of the manifold satisfies the condition

S(X1, X2) = ag(X1, X2) + bη(X1)η(X2). (2.18)

If b = 0, the manifold is an Einstein manifold.
If a = 0, the manifold is a special type of η-Einstein manifold.
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3. Schouten-van Kampen connection
Let U1 and U2 be two complementary distributions on a connected pseudo-

Riemannian manifold of an arbitrary signature (p, n− p), 0 ≤ p ≤ n, n = dimM ≥
2, such that dim(U1) = (n−1) and dim(U2) = 1 and the distribution U2 is non-null.
Then we have TM = U1 ⊗ U2, Also U1 ∩ U2 = {0} and U1 ⊥ U2 such that

U1 = kerη, U2 = span{ξ}

where η is a linear form and ξ is unit vector field such that η(X) = ϵg(X, ξ).
Moreover, it holds that ▽Xξ ∈ U1.
For any X ∈ TM , if Xu1 and Xu2 are the projections of X onto U1 and U2.
We have

X = Xu1 +Xu2

with
Xu1 = X − η(X)ξ,

and
Xu2 = η(X)ξ.

The SVK-connection ▽̄ associated with Levi-Civita connection ▽ and adapted to
the pair of the distribution (U1, U2) is defined by [3]

▽̄X1
X2 = (▽X1X

u1
2 )u1 + (▽X1X

u2
2 )u2 . (3.1)

From the above equation, we have

(▽X1X
u1
2 )u1 = ▽X1X2 − η(▽X1X2)ξ − η(X2)▽X1 ξ. (3.2)

and
(▽X1X

u2
2 )u2 = (▽X1η)(X2)ξ + η(▽X1X2)ξ. (3.3)

Thus, the SVK-connection with the help of Levi-Civita connection is being ex-
pressed as [8]

▽̄X1
X2 = ▽XX2 − η(X2)▽X1 ξ + (▽X1η)(X2)ξ. (3.4)

Thus, with the help of SVK-connection, one can characterize many properties of
some geometric objects, which are connected with the distributions U1, U2. We
compute that g, ξ, η are parallel with respect to ▽̄, that is ▽̄g = 0, ▽̄ξ = 0,
▽̄η = 0. Also the torsion T̄ of connection ▽̄ is given as [12]

T̄ (X1, X2) = η(X1)▽X2 ξ − η(X2)▽X1 ξ − 2dη(X1, X2)ξ. (3.5)
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4. Curvature tensor on (Lcs)n-manifolds with SVK-connection
Let M be an (Lcs)n-manifold with SVK-connection. Then using (2.5), (2.6) in

(3.2), we have the SVK-connection ▽̄ associated to the Levi-Civita connection ▽
as

▽̄X1
X2 = ▽X1X2 − αη(X2)X1 + αg(X1, X2)ξ (4.1)

Let R and R̄ be curvature tensors of Levi-Civita connection ▽ and the SVK-
connection ▽̄,

R̄(X1, X2)X3 = ▽̄X1
▽̄X2

X3 − ▽̄X2
▽̄X1

X3 − ▽̄[X1,X2]X3 (4.2)

Using (4.1), together with (2.5), (2.6), and (2.10), we obtain

▽̄X1
▽̄X2

X3 =▽X1
▽X2

X3 + (ρ+ 2α2)η(X1)g(X2, X3)ξ + α(X1g(X2, X3))ξ

+ 2α2g(X2, X3)X1 − α(X1η(X3))X2 − αη(X3)▽X1 X2

+ αg(X1,▽X2X3)ξ − αη(▽X2X3)X1 + α2η(X3)η(X2)X1

− ρη(X3)η(X1)X2, (4.3)

▽̄X2
▽̄X1

X3 =▽X2
▽X1

X3 + (ρ+ 2α2)η(X2)g(X1, X3)ξ + α(X2g(X1, X3))ξ

+ 2α2g(X1, X3)X2 − α(X2η(X3))X1 − αη(X3)▽X2 X1

+ αg(X2,▽X1X3)ξ − αη(▽X1X3)X2 + α2η(X3)η(X1)X2

− ρη(X3)η(X2)X1, (4.4)

▽̄[X1,X2]X3 =▽[X1,X2] X3 + αg(▽X1X2, X3)ξ − αg(▽X2X1, X3)ξ

− αη(X3)▽X1 X2 + αη(X3)▽X2 X1. (4.5)

Using (4.3), (4.4) and (4.5) in (4.2), we have

R̄(X1, X2)X3 =R(X1, X2)X3 + 3α2[g(X2, X3)X1 − g(X1, X3)X2]

+ (ρ+ 2α2)[η(X1)g(X2, X3)ξ − η(X2)g(X1, X3)ξ

+ η(X2)η(X3)X1 − η(X1)η(X3)X2]. (4.6)

By putting X3 = ξ in (4.6), we have

R̄(X1, X2)ξ = 2(α2 − ρ)(η(X2)X1 − η(X1)X2). (4.7)

Taking inner product with ξ in (4.6), we have

η(R̄(X1, X2)X3) = 2(α2 − ρ)(g(X2, X3)η(X1)− g(X1, X3)η(X2)). (4.8)
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On contracting (4.6), we have Ricci tensor S̄ of an (Lcs)n-manifold with respect
to the SVK-connection ▽̄ as

S̄(X1, X2) =S(X1, X2) + [α2(3n− 5)− ρ)]g(X1, X2)

+ (n− 2)(2α2 + ρ)η(X1)η(X2). (4.9)

S̄(X1, ξ) = 2(n− 1)(α2 − ρ)η(X1). (4.10)

Again the Ricci operator Q̄ of an (Lcs)n-manifold with respect to the SVK-
connection ▽̄ is given as

Q̄X1 = QX1 + [α2(3n− 5)− ρ)]X1 + (n− 2)(2α2 + ρ)η(X1)ξ. (4.11)

where S̄(X1, X2) = g(Q̄X1, X2).
Now, contracting (4.9) with respect to X1 and X2, we have the scalar curvature

r̄ of the (Lcs)n-manifold with respect to the SVK-connection ▽̄ as

r̄ = r + (n− 1)(3n− 4)α2 − 2(n− 1)ρ. (4.12)

where r is scalar curvature with respect to Levi-Civita connection ▽.

5. Projectively flat (Lcs)n-manifolds with SVK-connection
The projective curvature tensor P̄ with respect to the SVK-connection ▽̄ is

defined as

P̄ (X1, X2)X3 = R̄(X1, X2)X3 −
1

n− 1
[S̄(X2, X3)X1 − S̄(X1, X3)X2]. (5.1)

A manifold is said to be projectively flat if

P̄ (X1, X2)X3 = 0. (5.2)

From equations (5.1) and (5.2), we have

R̄(X1, X2)X3 =
1

n− 1
[S̄(X2, X3)X1 − S̄(X1, X3)X2]. (5.3)

Taking inner product in (5.3) with ξ, we get

g(R̄(X1, X2)X3, ξ) =
1

n− 1
[S̄(X2, X3)g(X1, ξ)− S̄(X1, X3)g(X2, ξ)]. (5.4)

Using (4.8) and (5.4), we get

2(α2 − ρ)(g(X2, X3)η(X1)− g(X1, X3)η(X2)) =
1

n− 1
[S̄(X2, X3)η(X1)

−S̄(X1, X3)η(X2)].
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Putting X1 = ξ, the above equation takes form

2(α2 − ρ)[−g(X2, X3))− η(X2)η(X3)] =
1

n− 1
[−S̄(X2, X3)

−2(n− 1)(α2 − ρ)η(X2)η(X3)].

Solving, we have the following:

Theorem 5.1. A projectively flat (Lcs)n-manifold with SVK-connection is an
Einstein manifold.

An (Lcs)n-manifolds with SVK-connection is said to be ϕ-projectively flat if

′P̄ (ϕX1, ϕX2, ϕX3, ϕX4) = 0, (5.5)

where X1, X2, X3, X4 ∈ χ(M).
By (5.1), we have

′P̄ (X1, X2, X3, X4) = ′R̄(X1, X2, X3, X4)

− 1

n− 1
[S̄(X2, X3)g(X1, X4)− S̄(X1, X3)g(X2, X4)],

where ′P̄ (X1, X2, X3, X4) = g(P̄ (X1, X2)X3, X4) and
′R̄(X1, X2, X3, X4) = g(R̄(X1,

X2)X3, X4).
Now putting X1 = ϕX1, X2 = ϕX2, X3 = ϕX3, X4 = ϕX4 in above and using

(5.5), we have

′R̄(ϕX1, ϕX2, ϕX3, ϕX4) =
1

n− 1
[S̄(ϕX2, ϕX3)g(ϕX1, ϕX4)

− S̄(ϕX1, ϕX3)g(ϕX2, ϕX4)]. (5.6)

Let {ϕe1, ϕe2.....ϕen−1, ξ} be the local orthonormal basis of vector fields in M .
Putting X1 = X4 = ei in (5.6) and taking summation over i = 1 to n− 1, we have

n−1∑
i=1

′R̄(ϕe1, ϕX2, ϕX3, ϕe4) =
1

n− 1
[S̄(ϕX2, ϕX3)

n−1∑
i=1

g(ϕe1, ϕe4)

−
n−1∑
i=1

S̄(ϕe1, ϕX3)g(ϕX2, ϕe4)]. (5.7)

Solving the above, we have

S̄(ϕX2, ϕX3) =
1

n− 1
[(n− 1)S̄(ϕX2, ϕX3)− g(Q̄ϕX2, ϕX3)],
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which yields
S̄(ϕX2, ϕX3) = 0 = g(Q̄ϕX2, ϕX3). (5.8)

Using Q̄ϕ = ϕQ̄ = ϕQ+ [(3n− 5)α2 − ρ] in (5.8)

g(ϕQX2, ϕX3) + [(3n− 5)α2 − ρ]g(ϕX2, ϕX3) = 0. (5.9)

Using (2.10) and (2.16), (5.9) reduces to

S(X2, X3) = [ρ− (3n− 5)α2]g(X2, X3) + [nρ− 2(2n− 3)α2]η(X2)η(X3). (5.10)

From (4.9) and (5.10), we obtain

S̄(X2, X3) = 2(n− 1)(ρ− α2)η(X2)η(X3). (5.11)

Thus, we state the following

Theorem 5.2. A ϕ-projectively flat (Lcs)n-manifold with SVK-connection is a
special type of η-Einstein manifold.

6. Conformally flat (Lcs)n-manifolds with SVK-connection
The Weyl conformal curvature tensor C̄ of type (1, 3) of an n-dimensional Rie-

mannian manifold is given as

C̄(X1, X2)X3 =R(X1, X2)X3

− 1

(n− 2)

[
S̄(X2, X3)X1 − S̄(X1, X3)X2

+ g(X2, X3)Q̄X1 − g(X1, X3)Q̄X2

]
+

r

(n− 1)(n− 2)

[
g(X2, X3)X1 − g(X1, X3)X2

]
(6.1)

Let us suppose that (Lcs)n-manifold is Conformally flat with respect to the SVK-
connection, we have

C̄(X1, Y )X3 = 0. (6.2)

Using equation (6.1) and (6.2)

R̄(X1, X2)X3 =
1

(n− 2)

[
S̄(X2, X3)X1 − S̄(X1, X3)Y

+ g(X2, X3)Q̄X − g(X1, X3)Q̄X2

]
− r̄

(n− 1)(n− 2)

[
g(X2, X3)X1 − g(X1, X3)X2

]
. (6.3)
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Taking inner product with X4

g(R̄(X1, X2)X3, X4) =
1

(n− 2)
[S̄(X2, X3)g(X1, X4)− S̄(X1, X3)g(X2, X4)

+ g(X2, X3)S̄(X1, X4)− g(X1, X3)S̄(X2, X4)]

− r̄

(n− 1)(n− 2)

[
g(X2, X3)g(X1, X4)

− g(X1, X3)g(X2, X4)
]
. (6.4)

Putting X4 = ξ and using equations (2.4) and (4.10), we have

η(R̄(X1, X2)X3) =
1

(n− 2)
[S̄(X2, X3)η(X1)− S̄(X1, X3)η(X2)]

+ [
2(n− 1)(α2 − ρ)

n− 2
− r̄

(n− 1)(n− 2)
]

[g(X2, X3)η(X1)− g(X1, X3)η(X2)]. (6.5)

Using equation (4.8), above equation becomes

S̄(X2, X3)η(X1) =S̄(X1, X3)η(X2) + [
r̄

(n− 1)
− 2(α2 − ρ)]

[g(X2, X3)η(X1)− g(X1, X3)η(X2)]. (6.6)

Using X = ξ in (6.6) and using equations (4.10) and (2.3), we have

S̄(X2, X3) =[
r̄

(n− 1)
− 2(α2 − ρ)]g(X2, X3)

+ [
r̄

(n− 1)
− 2n(α2 − ρ)]η(X2)η(X3). (6.7)

Hence, we can state the following:

Theorem 6.1. A conformally flat (Lcs)n-manifold with SVK-connection is an
η-Einstein manifold.

7. Conharmonically flat (Lcs)n-manifolds with SVK-connection
The conharmonic curvature tensor V̄ with respect to the SVK-connection ▽̄ is

defined as

V̄ (X1, X2)X3 =R̄(X1, X2)X3 −
[
S̄(X2, X3)X1 − S̄(X1, X3)X2

+ g(X2, X3)Q̄X1 − g(X1, X3)Q̄X2

]
. (7.1)
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A manifold is said to be conharmonically flat if

V̄ (X1, X2)X3 = 0. (7.2)

From equations (7.1) and (7.2), we have

R̄(X1, X2)X3 = S̄(X2, X3)X − S̄(X1, X3)X2 + g(X2, X3)Q̄X1 − g(X1, X3)Q̄X2.
(7.3)

Now using (4.6), (4.9) and (4.11)

R(X1, X2)X3 =S(X2, X3)X1 − S(X1, X3)X2

+ (α2(6n− 13)− 2ρ)[g(X2, X3)X1 − g(X1, X3)X2]

+ (n− 3)(2α2 + ρ)[g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ]

+ (n− 3)(2α2 + ρ)[η(X2)η(X3)X1 − η(X1)η(X3)X2]

+ [g(X2, X3)QX1 − g(X1, X3)QX2]. (7.4)

Put X1 = ξ and using (2.13),(2.15) and (2.16) in above, we get

(α2 − ρ)[g(X2, X3)ξ − η(X3)X2] =S(X2, X3)ξ +
(
5nα2 − 8α2 − 2ρ(1− n)

)
× g(X2, X3)ξ. (7.5)

Taking inner product with ξ, we have

S(X2, X3) =(9α2 − 5nα2 − 3ρ+ 2nρ)g(X2, X3)

+ (10α2 − 6nα2 + 3nρ− 4ρ)η(X2)η(X3). (7.6)

Thus we have the following:

Theorem 7.1. A conharmonically flat (Lcs)n-manifold with SVK-connection is
an η-Einstein manifold with the Levi-Civita connection.

Again using (7.6) in (4.9), we obtain

S̄(X2, X3) = 2(2− n)(α2 − ρ)g(X2, X3) + 2(3− 2n)(α2 − ρ)η(X2)η(X3). (7.7)

Thus, we state
Theorem 7.2. A conharmonically flat (Lcs)n-manifold with SVK-connection is
an η-Einstein manifold.

8. Concircularily flat (Lcs)n-manifolds with SVK-connection
The concircular curvature tensor C̆ with respect to the SVK-connection ▽̄ is

defined as

C̆(X1, X2)X3 = R̄(X1, X2)X3 −
r̄

n(n− 1)
[g(X2, X3)X1 − g(X1, X3)X2] (8.1)
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for all X1, X2, X3 in M.
Now assume that (Lcs)n-manifold is concircularily flat with SVK-connection then

C̆(X1, X2)X3 = 0 (8.2)

It follows

R̄(X1, X2)X3 =
r̄

n(n− 1)
[g(X2, X3)X1 − g(X1, X3)X2] (8.3)

Using (2.10),(2.12), (4.6) and (4.12), we get[
r − (n− 1)(4α2 + 3nα2 + 2ρ)

n(n− 1)

]
[g(X2, X3)η(X1)− g(X1, X3)η(X2)] = 0. (8.4)

This implies that either scalar curvature of the manifold is r = (n−1)(4α2+3nα2+
2ρ) or

g(X2, X3)η(X1)− g(X1, X3)η(X2) = 0. (8.5)

Put X1 = ξ in (8.5) and using (2.10)

g(X2, X3) = −η(X2)η(X3) (8.6)

Replace X3 by QX3, we have

S(X2, X3) = −(n− 1)(α2 − ρ)η(X2)η(X3). (8.7)

Hence, we state a theorem.

Theorem 8.1. For a concircularly flat (Lcs)n-manifold with SVK-connection,
either the scalar curvature is (n − 1)(4α2 + 3nα2 + 2ρ) or the manifold is special
type of η-Einstein manifold.

9. An example of (Lcs)n-manifolds with SVK-connection

Considering a 3-dimensional smooth manifold M=

{
(x, y, z) ∈ R3 : z ̸= 0

}
,

with (x, y, z), the standard coordinates. Let {e1, e2, e3} be linearly independent
global frame on M given by

e1 = z2
∂

∂x
, e2 = z2

∂

∂y
, e3 =

∂

∂z
(9.1)

Let g be the Lorentzian metric defined by

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1, g(e1, e2) = g(e2, e3) = g(e3, e1) = 0
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and η be 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Considering a (1,1) tensor field ϕ defined by

ϕ(e1) = −e2, ϕ(e2) = −e1, ϕ(e3) = 0.

Then using linearity of g and ϕ, we get

η(e3) = −1,

ϕ2(Z) = Z + η(Z)e3,

g(ϕZ, ϕW ) = g(Z,W ) + η(Z)η(W ).

for any Z, W ∈ χ (M). Now, by computation directly, we get

[e1, e3] = −2

z
e1, [e1, e3] = −2

z
e1, [e1, e2] = 0.

Using Koszul’s formula for the Lorentzian metric g, we have

▽e1e3 = −2

z
e1, ▽e2e3 = −2

z
e2, ▽e3e3 = 0,

▽e1e2 = 0, ▽e2e2 =
2

z
e3, ▽e3e2 = 0, (9.2)

▽e1e1 =
2

z
e3, ▽e2e1 = 0 ▽e3 e1 = 0.

From the above it can be easily seen that e3 = ξ is a unit timelike concircular
vector field and hence (ϕ, ξ, η, g, α) is an (Lcs)3-structure on M. Consequently

M3(ϕ, ξ, η, g, α) is an (Lcs)3-manifold with α = −2

z
̸= 0 such that (Xα) = ρη(X)

where ρ =
2

z2
.

Using the above relations, we calculate components of curvature tensor R as follows:

R(e1, e3)e3 = − 6

z2
e1, R(e2, e3)e3 = − 6

z2
e2,

R(ei, ej)e3 = 0, R(ei, ej)ej = − 4

z2
ei, i, j = 1, 2 (9.3)

R(e1, e3)e2 = 0, R(e2, e3)e1 = 0, R(e3, ei)ei = − 6

z2
e3.
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Now the SVK-connection on M is given as

▽̄e1e3 = −
(2
z
+ α

)
e1, ▽̄e2e3 = −

(2
z
+ α

)
e2, ▽̄e3e3 = α(e3 − ξ),

▽̄e1e2 = 0, ▽̄e2e2 =
2

z
e3 + αξ, ▽̄e3e2 = 0, (9.4)

▽̄e1e1 =
2

z
e3 + αξ, ▽̄e2e1 = 0 ▽̄ne3e1 = 0.

From (9.4) we have that ▽̄ei
ej = 0 (1 ≤ i, j ≤ 3) for ξ = e3 and α = −2

z
. Hence

M is a 3-dimensional (Lcs)n-manifold withSVK-connection.
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